Image enhancement for increased dot-counting efficiency in FISH.

نویسنده

  • Shishir Shah
چکیده

BACKGROUND The most commonly used molecular cytogenetic technique is fluorescence in situ hybridization (FISH). It has been widely applied in many areas of diagnosis and research, including pre-natal and post-natal screening of chromosomal aberrations, pre-implantation genetic diagnosis, cancer cytogenetics, gene mapping, molecular pathology and developmental molecular biology. The analysis of FISH images consists of detecting fluorescent dots, after which the number of dots per cell can be counted or their relative positions can be measured. A major impediment in the analysis of FISH specimens is signal (dot) quality, which is influenced by the hybridization efficiency and/or the sensitivity of the camera that records the images. METHOD In this paper, we present an approach to improve the efficiency of detecting fluorescent signals in FISH images by recovering the radiance map of the camera. This allows us to generate a high-dynamic-range image wherein an extended range of the sample radiance captured by the camera can be visualized at distinct intensity values. The resulting higher-order numeric complexity of the transformed image is adjusted (or simplified) by examining the intensity distribution in each of the three colour channels (red, green and blue), and remapping the intensity values to generate a high-contrast image with a lower-order (compressed) dynamic range. The remapping is based on a criterion that optimizes the detection of the hybridized signals, allowing attenuation of saturated intensity values while amplifying low-intensity signals. RESULTS A simple dot-counting algorithm is used to automatically process 2000 FISH images. The images are taken for lymphocytes from cultured blood specimens for cytogenetic testing. Images are manually analyzed by an expert to obtain ground truth for dot counts. A quantitative analysis is performed by comparing results of automated dot detection on images before and after enhancement with the developed algorithms. In addition, common errors in dot counting due to split dots, dust, poor segmentation and overlapping signals are analyzed and the robustness of the developed approach against these errors evaluated. It is observed that dot-detection efficiency is increased by an average of 9% across all colour channels while reducing errors in missed and false dot counts. CONCLUSIONS Our proposed method and results demonstrate that dot-counting specificity and sensitivity can be improved by pre-processing and enhancing the image using the radiance curve of the camera and generating a high-contrast, remapped high-dynamic-range image prior to using any algorithm for dot counting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

GELFISH--graphical environment for labelling fluorescence in-situ hybridization images.

Signal (dot) counting in fluorescence in-situ hybridization (FISH) images that relies on an automatic focusing method for obtaining clearly defined images is a time-consuming procedure prone to errors. Our recently developed system has dispensed with automatic focusing, and instead relies on a neural network classifying focused and unfocused signals into valid and artefact data, respectively, a...

متن کامل

Automatic signal classification in fluorescence in situ hybridization images.

BACKGROUND Previous systems for dot (signal) counting in fluorescence in situ hybridization (FISH) images have relied on an auto-focusing method for obtaining a clearly defined image. Because signals are distributed in three dimensions within the nucleus and artifacts such as debris and background fluorescence can attract the focusing method, valid signals can be left unfocused or unseen. This ...

متن کامل

FISH and chips: automation of fluorescent dot counting in interphase cell nuclei.

Fluorescence in situ hybridization allows the enumeration of chromosomal abnormalities in interphase cell nuclei. This process is called dot counting. To estimate the distribution of chromosomes per cell, a large number of cells have to be analyzed, especially when the frequency of aberrant cells is low. Automation of dot counting is required because manual counting is tedious, fatiguing, and t...

متن کامل

Fluorescent dot counting in interphase cell nuclei

Fluorescence in situ hybridization allows the enumeration of chromosomal abnormalities in interphase cell nuclei. This process is called dot counting. To estimate the distribution of chromosomes per cell, a large number of cells have to be analysed, particularly when the frequency of aberrant cells is low. Automation of dot counting is desirable because manual counting is tedious, fatiguing, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microscopy

دوره 228 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007